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Motivation

 For verification of computer codes for instability
simulation it is important to have a reliable
experimental date in simple conditions.

* Experiments in small scale low energy rings can
be used for quantitative verification of simulation
codes and for development of methods for
instability damping .

 Informative diagnostics is important for collection
of necessary information.
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e-p instability: historical remarks and
references

Small scale Proton Storage Rings
Diagnostics

Observations

Damping of e-p instability and production
of a stable space charge compensated
circulating beam with high intensity



Abstract

« Diagnostics for observation and identification of
Instabilities driving by interaction with secondary plasma
in small scale PSR are considered.

« Clearing electrodes, fast gauges, fast valves,fast
extractors, repulsing electrodes, electron and ion
collectors with retarding grids, particles spectrometers
using for detection of secondary particles generation and
secondary particles identification will be discussed.
Features of electrostatic and magnetic dipole and
quadrupole pickups will be presented. An influence of
nonlinear generation of secondary plasma in driving and
stabilization of e-p instability is discussed. Observations
of anomaly in secondary particles generation will be
presented.



Two-stream instabillity, historical remarks

Beam instability due to electrons were first
observed with coasting proton beam and long
proton bunches at the Novosibirsk INP(1965),
the CERN ISR(1971), and the Los Alamos
PSR(1986)..

Recently two-stream instability was observed In
almost all storage rings with high beam intensity.

Observation of two-stream instability in different
conditions will be reviewed. Diagnostics and
damping of two-stream instability will be
discussed



Two-stream instabillity

Beam interaction with elements of accelerator and
secondary plasma can be the reason for instabilities,
causing limited beam performance.

Improving of vacuum chamber design and reducing of
impedance by orders of magnitude relative with earlier
accelerators increases threshold intensity for impedance
iInstability.

Two-stream effects (beam interaction with a secondary
plasma) become a new limitation on the beam intensity
and brightness. Electron and Antiproton beams are
perturbed by accumulated positive ions. Proton and
positron beams may be affected by electrons or negative
lons generated by the beam. These secondary particles
can induce very fast and strong instabilities. These
iInstabilities become more severe in accelerators and
storage rings operating with high current and small
bunch spacing



This instability is a problem for heavy ion inertial fusion,
but ion beam with higher current density can be more
stable.

Instability can be a reason of fast pressure rise
iInclude electron stimulated gas desorption, ion
desorption, and beam loss/halo scraping. Beam
iInduced pressure rise had limited beam intensity
in CERN ISR and LEAR. Currently, it is a limiting
factor in RHIC, AGS Booster, and GSI SIS. It is
a relevant issue at SPS, LANL PSR, and B-
factories. For projects under construction and
planning, such as SNS, LHC, LEIR, GSI
upgrade, and heavy ion inertial fusion, it is also
of concern.
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First project of proton/antiproton collider
VAPP, in the Novosibirsk INP (BINP), 1960

Development of charge-exchange injection (and
negative ion sources) for high brightness proton beam
production. First observation of e-p instability.

Development of Proton/ Antiproton converter.

Development of electron cooling for high brightness
antiproton beam production.

Production of space charge neutralized proton beam
with intensity above space charge limit. Inductance
Linac, Inertial Fusion, Neutron Generators.
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Historical remark

Electron cloud effects (ECEs) were first observed 38 yrs ago in small,
medium-energy proton storage rings. These were described as: Vacuum
pressure bump instability, beam-induced multipacting, and/or e-p instability:

BINP Proton Storage Ring [G. Budker, G. Dimov, and V. Dudnikov (1966); see
also review by V. Dudnikov (2001)] v.dudnikov.ph.D.thesis,1966

CERN Intersecting Storage Ring (ISR) [O. Grobner (1977)]

First observation in a positron ring around 1995: Transverse coupled-bunch
instability in e+ ring only and not in e- ring:

KEK Photon Factory (PF) [M. Izawa, Y. Sato, T. Toyomasu (1995) and K. Ohmi,
(1995)]

IHEP Beijing e+/e- collider (BEPC): experiments repeated and KEK PF
results verified [Z.Y. Guo et al. (1997)]
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Models of two-stream instability

The beam- induces electron cloud buildup and development of
two-stream e-p instability is one of major concern for all projects
with high beam intensity and brightness [1,2].

In the discussing models of e-p instability, transverse beam
oscillations is excited by relative coherent oscillation of beam
particles (protons, ions, electrons) and compensating particles
(electrons,ions) [3,4,5].

For instability a bounce frequency of electron’s oscillation in
potential of proton’s beam should be close to any mode of
betatron frequency of beam in the laboratory frame.

. http://wwwslap.cern.ch/collective/electron-cloud/.
. http://conference.kek.jp/two-stream/.

. G.I.Budker, Sov.Atomic Energy, 5,9,(1956).
. B.V. Chirikov, Sov.Atomic.Energy,19(3),239,(1965).

. M.Giovannozzi, E.Metral, G.Metral, G.Rumolo,and F. Zimmerman , Phys.Rev. ST-
Accel. Beams,6,010101,(2003).
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Development of Charge Exchange Injection and Production of
Circulating Beam with Intensity Greater than Space Charge Limit

V.Dudnikov. “Production of an intense proton beam in storage ring by a charge- exchange injection method”,
Novosibirsk, Ph.D.Thesis,INP, 1966.

Development of a Charge- Exchange Injection; Accumulation of proton beam up to space charge limit; Observation and damping of
synchrotron oscillation; Observation and damping of the coherent transverse instability of the bunched beam. Observation of the e-p
instability of coasting beam in storage ring

G. Budker, G. Dimov, V. Dudnikov, “Experiments on production of intense proton beam by charge exchange injection method” in
Proceedings of International Symposium on Electron and Positron Storage Ring, France,Sakley,1966, rep. VIII, 6.1 (1966).
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Chupriyanov. “Production of intense compensated proton beam in an accelerating ring”’, Novosibirsk, INP, 1952.

Observation and damping transverse coherent e-p instability of coasting proton beam and production of the proton beam with an
intensity up to 9.2 time above a space charge limit.

G.Dimov, V.Chupriyanov, “Compensated proton beam production in an accelerating ring at a current above the space charge limit”,

Particle accelerators, 14, 155- 184 (1984). Yu.Belchenko, G.Budker, G.Dimov, V.Dudnikov, et al. X PAC,1977.



General view of INP PSR with charge exchange injection
1965




INP PSR for bunched beam accumulation by charge exchange
Injection

1- Fist stripper; 2-main
stripper Pulsed supersonic
jet; 3-gas pumping;
4-pickup integral;

5- accelerating drift tube;
6-gas luminescent profile
Monitor; 7-Residual gas
current monitor;8-residual
gas IPM; 9-BPM,;
10-transformer Current
monitor; 11-FC;

12- deflector for
Suppression transverse
instability by negative
Feedback.

Small Radius- High beam density. Revolution 5.3 MHz. 1MeV, 0.5 mA, 1 ms.



PSR for Circulating p-Beam Production

4 9 B 1 12
i f"_ i
16 n 4] /-," i > 4 1-striping gas target;
. EEE E Em 2-gas pulser;3-FC;
N v 4-Q) screen;

5,6-moving targets;
7-10n collectors;
8-current monitor;
9-BPM;10-Q pick
“d ups; 11-magnetic
BPM; 12-beam loss
monitor;13-detector
of secondary
particles density;
14-inductor core;
15-gas pulsers;
16-gas leaks.

| [l
H: / /
2/ T s/
Proton Energy -1 MeV; injection-up to 8 mA; bending radius-42 cm; magnetic
field-3.5 kG;index-n=0.2-0.7; St. sections-106 cm;aperture-4x6 cm; revolution-

1.86 MHz; circulating current up to 300mA is up to 9 time greater than a space
charge limit.



Vacuum control

Stripping target- high dense supersonic
hydrogen jet (density up to e19 mol/cm?,
target e17 mol/cm? , ~1ms)

Vacuum e-5 Torr
Fast, open ion gauges

Fast compact gas valves, opening of 0.1
ms.



Fast, compact gas valve, 0.1ms, 0.8 kHz

1 -current feedthrough;
2 housing; 3-clamping
screw; 4-coil; 5 magnet
core; 6-shield; 7-screw;
8-copper insert; 9-yoke;
10-rubber washer-
returning springs;
11-ferromagnetic plate-
armature; 12-viton stop;
13-viton seal; 14-sealing
ring; 15-aperture;
16-base; 17-nut.
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Photograph of a fast, compact gas valve
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Proton beam accumulation for different injection
current (0.1-0.5 mA)

Injected beam

Circulating beam,

Low injection current

1

Strong saturation




Residual gas ionization beam current &
proflle monitors (ICM,IPM),1965.

Residual gas IPM. V. Dudnikov, 1965

/ I-reflection platre;2-suppression grid;

/ 3-collector plate;4-shilding grid;
400 / 5 collector strips.
Z,=220 pA

/ I,p=720 mA
2001

L2 2 ey kV




Residual gas luminescent beam profile monitor,
INP,1965

1- magnetic pole;
2- proton beam;

j 3- moving collimator
7%T 4- light guide;
o~ 1] 5 5-photomultiplier;

[T
6-vacuum chamber




Beam profiles evolution during accumulation
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Residual gas luminescent beam profilometer signa, and beam intensity vs vertical aperture
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Residual gas ionization bearn profile monitor (IPM) signal and beam intensity vs radial aperture
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IPM signal, electron collection in B field
Step 9mm.

V.Dudnikov, 1965,




Modern IPM (DESY)

—] Rexst itar Petia Desi
HAVE  LDAD  HET

¥
EI'J Phosphor screen
2

StrahlprofiGas monibore -
Manitor  Skala Optionen  Drucken  Kameras  Stalus EWNDE
39,97 EIE

»Vacuum 10-9 mbar
»1-60-210 Bunches => << 0.1 - 160 mA
»7.5-40-820 GeVic

»beam width << 1 mm, length 30 -3 cm

DESYIFPM



Fermilab IPM

 Mark-ll details

Secondary Screen Grid



Internal Structure, FNAL IPM.

Main Injector
Electrostatic Unit

 J.Zagel



Signal and Timing

- Typical Amplified
Strip Signal Tokstop | L e 0y
Sync Clock
(Captured in Recycler) — [oiiboidni i

Ch1 5.00V |8 20.0mve M[2.00us| A Ch2 J 29.2mV,

Ao e o




Interesting Observations

 Plate Discoloration —

from long term
exposure to beam

— Reason unknown so
far




CERN Lumlnescence Profile Monitor

H & V Reference Screens

e s ™~
AL = N, injection
2
750 4 = /_
i \ . ,.:
R - )

It works with N, injection

1 light channel is going to a
PM for gas-luminescence
studies (decay time etc.)

2 channels are used for profile
measurements:

— The H channel is in air: it
showed high background
with LHC beam, due to
beam losses

— The V channel is in
vacuum

The MCP has a pre-programmed
variable gain over cycle

(it showed some problems to log on
timing events)



CERN IPM inside




CERN Beam profile. The Fitting Strategies

Beam Profile

Data Poink

E:}OOOI— . Data Points Above Treshdl
e B Sigma=1.852 mm -- WSGUI Ei
— ~ Sigma=1.750 mm -- Fit Gaus+Offs
§2500|__ Fit Gaus+Offs (with treshold)
= N
=3 B
E i Aggma ®5.6% > A, = 11.2%
1500—
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Secondary Particles detector with repeller,
INP,1967
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Secondary particles detector:
[-reflection plate; 2-collector; 3-retarding grid; 4-shilding;

5-grid; 6-beam. a -helium ion;b -nitrogen ion;c -electrons.



ANL Fast collector with repeller

Electron Sweeping diagnhostic

@ Designed by A. Browman to measure e-cloud surviving passage of the gap
@ Short HV (~1kV) pulse is applied to electrode to sweep electrons into RFA
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Inductive BPM, INP,1967

to ﬂﬁ:f@ﬁers

1-ferrite ring; 2-coils; 3-commutator.



Signals and spectrum from inductive BPM




Inductive BPM (DESY).

Inductive Beam-Position Pickup
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Schematic of the inductive beam-position pickup.

o Cireulay beampipe of 84 mun diaaneler aperture.

» 10 nun wide cersanic sap.

e |3 mun diameter NiE _..1]..-}_- bandaged toroid transformer
with 4 orthogonally arranged single-loops (elect rode-coils).

o Normalized sensitivity A/Z =& 1.2%,/un with a high lincarity
over the full aperture.

o Tipical signal levels range between some 10 m'V at flat=bhottom

and several volts at Hat-t P ENETEY | ]'ll‘;-.':\.—:h("r:l; 11T litudes
50 £ termaaation ). Al

e 30 kHz...250 MHz (-3 dB) bandwidth.

DESY Ill BPMs

Electronics Hardware

Schematic of the modified analogue B
BPM-<lectronics.
Wherever poasible, commmercial subsrstems and ¢
used for electronics ardware of the BOM/BIPM-s
o A molifien]l BERGOZ BPM-elactronics for the
T4l proceEsing,
— Input fraquency range = 3...10 MHz, wo puar
tertion of any rmaniher of bhimches in the ring.
= [I' center frecuency of GO MHz, 500 kHz band
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— Chanmes on the internal clock frecpency aned
o Two Cuime VXL disitizer-boards (VXI-
VM2dld) with 64 independent  16-Lit AL
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o A PC plug-in delay oenerator (Stanford DGL3
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& Usual PC-hardware, including a JEEE1304 “Fiix
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Transverse instability in the INP PSR,
bunched beam (1965)
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Transverse instability of bunched beam in
INP PSR (1965)

Transwverse e-p instability in IINP Proton storage ring (PSR,

1965. Hbunched Heamn Injection irme is Ims
I —prick g elecrode sigrnial 2-beam loss monitor;
F-Heam intensityv, F-Rad BPA; 5vyadial pick s,
S—prick g sigral U= 1 AEF,; 7pick wp sigrnal Urf=2.8;
S—prick g sigrnal Urf=+H . 2KF;
- bearn intensity below threshold for insvab;
I0-bHearrn inrensity above threshold for inssabilizy, no ffed
bBack srabilizarion. I1- beam inrensitv above threshold

Jor fransverse tnstability, fied back stabilization ON




Transverse instability of bunched beam with a high
RF voltage

1-ring pickup, peak bunch
intensity ;

2-radial loss monitor.
Beam was deflected after
Instability loss.

Two peaks structure of
beam after instability loss.
Only central part of the
beam was lost

1 ms




Evolution of bunches profiles in INP PSR

\ VA4 - 7‘/“, 3 1- 0.05 ms(100 turns):
2- 0.4 ms(1000 turns);

3- 0.8 ms (3000 turns);

\M 4- 2.8 ms, before start
Transverse instability.

Bunches period 188 ns

\J /\-/\ 3 Coasting beam injection




Transverse instability in Los Alamos PSR,
bunched beam (1986)

0.5 ms/div



e-p instability in LA PSR, bunched beam

Well Established ep Instability Characteristics at PSR

Instability Signals

BPM AV signal
CM42 (4.2 uC)
(Circulating Beam  Control by rf buncher voltage
Current)
i, 8
sEEnk =3bj 130 jl Bt T
E v’
og o0
. % >
e Growth time ~ 75 us or ~200 ~ " 8
turns @, o
o High frequency ~ 70 — 200 MHz ;- e
e Controlled primarily by rf E " Historical data for
buncher voltage g Ml good tunes
® Requires electron neutralization F Y
of ~ 1% (from centroid model) " , , ,
0 5 10 16 20

rf Buncher Voltage (kV)

Macek, LANL



Pickup signals and electron current in LA
PSR

Beam Si gnals at End of Storage for Unstabl e Beam

1633.8 1634.0 1634.2 1634.4 1634.6 1634.8 1635.0
4 v T T T T v T ' T v T

—— SRWWM1 V Diff

Signals (Volts)
—

1 F

—— Harkay Detector
—— SRWCAl

S

1633.8 1634.0 1634.2 1634.4 1634.6 1634.8 1635.0

Time (usec)

R.Macek, LANL



Electron signal and proton loss in LA PSR

“Saturated” Swept and Prompt e’s vs local losses

Averaged (16 macro pulses) ES41Y signals for three different bumps and local losses

na AT IGE, s 19 108h ued Tyl00g T I 2
T T T T T
o ——-*-"--._ . i’f\ Iﬂ%{,-,;,—'-‘_‘“-wnl r-#._,—rr-hwwnﬁ"-"'“““'ﬁ b fﬁ"’ﬂ%"’_ S . 'y'_,\,.p?-_‘:
W 4L W LY i ;’
- il ) (M 5 1} X / .
u .|:| :. | i) . '||IJIII -'_|'||' 'l':l' _-'.,I
. . I.”.|' N 0 ".Il'
ozl ||".'I|'|II II..' I:II I | -,;'.':|
I'I H L 1 |I|I | ]!
] If Swept e signals '| i '|'I
bl i
ol | \! l llll " i
e I | I" ‘I
) .||r L]
SLLE J
i ™ Prompt e signals il
P ¥ T P T e
Zi o
Loss Signals (LM59) for the three bumps (0, +2, +4 mm in section 4)
e L e B L R LT o I P L Lo
. |——— 1 - ey | 2 e I ——
|- \ ' e __';""'-;-:_—F ﬂl\"- P > o -‘-::-‘-._ — __._'_-..--""_AH-" I:: e "H-:‘:
= e V) A
Lia l.'ll'." / e "'-.."_.. ;:?. | .":r I':II'._ 1 i r;
o 1 Ly f ) ¥ A i
! I|I' \ ' I'.. 1\ I "_‘,' \ i
o I|| I.l lll'l' / I'!II'- ._,':_- I1 I' J q
nn I| \ ||I | | |II \ .|‘|' 'I'. | B
. W \ W Ay J
o8 Ilnl W/ ! | Ili'| v L
o I'. \ I' l'. % Y i
3 '|I wl |II IIl L%
i S Lo Wt h¥a
AR} q i [ 1
LB nx =35 LE] LE Hq
S il PRT
Gl RIM ICEA ECE m PSR BE 58 p 142-3

R.Macek, LANL



PSR for beam accumulation with inductive acceleration

current
source

1-first stripper;
2-magnet pole n=0.6;
3-hollow copper torus
with inductance current;
4-main stripper;
5-accelerating gap;
6-ring pickup; 7-BPMs;
8-Res.gas IPM;
9-vacuum chamber.
FC; quartz screens;
Retarding electron and
ion collectors/
spectrometers .



1-beam current, N>7e9p

e-p instability with a low threshold in INP PSR

Ve

b
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beam current
monitor

INonior

eaim potential

electron collector

ion collector
energy analyzer

ion collector
energy analyzer

transverse ion
collector

ion collector

.d—’\-t.,
i,

e AL N

bunching detector

T,

transverse ion

collector

2-beam potential, slow
Accumulation of electrons
10mcs, and fast loss 1mcs.
3-retarding electron collector;
4,5-ion collector, ionizing

Current Monitor;
6,7-ion Collectors Beam

potential monitor;
8,9- negative mass Instability

Injection:
Coasting beam, 1MeV, 0.1mA

R=42 cm.

s _/
9 M
0.125 0.25  t, ms
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Instability of coasting beam in AG PSR, 1967

1- beam current
monitor;

2-vertical proton
loss monitor;

sheond _ 3- radial proton loss;
e 4-detected signal of

T vertical BPM.
_3__,/-\:» 20 mcs/div.




e-p instability of coasting beam in the INP PSR
(1967)
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e-p instability of coasting beam in LA PSR,1986

beam
| current

SCFEREF

loss

ol BPM

0.2 ms/div



INP PSR for beam above space charge limit




Small Scale Proton Storage Ring for Accumulation of
Proton Beam with Intensity Greater than Space Charge

Limif




Beam accumulation with clearing voltage

‘h\ J current monitor

- VBMP detected
i| cleaning voltage
- = | 10KV

Ims

Secondary plasma
accumulation
suppressed by strong
transverse electric
field. Vertical
instability with zero
mode oscillation
was observed
(Herward instability).



Threshold intensity N (left) and growth rate J (right) of
instability as function of gas density n
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Spectrums of coasting beam instability in BINP PSR
(magnetic BPM)

h

6 14 22 30 38 45 5% f MHz
Spectrum of signals from vertical beam position monitor.
a) N=1.7 10" p; b) N=1.5 10" p.




Spectrums transverse beam instability in LA PSR

Frequency spectra of unstable motion agrees with model
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Beam accumulation with space charge
neutralization

\I / beam accumulation above space charge limit

beam current monitor

vertical BPM, dipole

detected
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lonization cross sections for H
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Proton beam accumulation with intensity above space charge limit

beam
intensity

ion density

dipole BPM

quadrupole

oscillation
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Proton beam accumulation with intensity grater than space
charge limit. Dependence of injection current.
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Beam accumulation with a plasma generator
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Fast lon-beam instability of H- beam in FNAL Linac

Hydrogen, ‘normal operatlons 2. 4x10{Torr
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Transverse instability in FNAL Booster, DC B,
Coasting beam. Injection 400MeV, 45 mA.

Instabality of coastimg beam m boster
during accumulation in DC field

___SA: Snagshot Plot =1

Wertical BPM, high impedance

=8 MHz vertical oscillations

10 mW, R=1 MOhm, electron current to
WEBPN with reflection voltage

p=3 10-8B Torm. L=15 cm



Secondary electron generation in the FERMILAB
booster, normal acceleration
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Fig. 1.Secondary electron formation in proton beam of booste:
For different proton beam intensity Qb. Calibration 2E12p/V.
1 Channel: Proton beam intensity;

2 Channel: signal from reflecting plate of Ionization profile
monitor (IPM). R=1 Mohm.



Observation of anomaly in secondary electron generation
in the FERMILAB Booster

Observation of secondary particles in the booster proton beam are presented in the
Booster E-Log at 04/06/01 .

Reflecting plate of the Vertical lonization Profile Monitor (VIPM) was connected to the
1 MOhm input of oscilloscope (Channel 2).

To channel 1 is connected a signal of proton beam Charge monitor Qb, with
calibration of 2 E12 p/V.

Oscilloscope tracks of the proton beam intensity Qb (uper track) and current of
secondary particles (electrons) Qe (bottom track) are shown in Fig. 1 in time scale 5
ms/div (left) and 0.25 ms/ div (right).

The voltage on MCP plate is Vmcp=-200 V.

It was observed strong RF signal induced by proton beam with a gap ( one long
bunch). For intensity of proton beam Qb< 4E12 p electron current to the VIPM plate
is low ( Qe< 0.1 V~ 1E-7 A) as corresponded to electron production by residual gas
ionization by proton beam.

For higher proton beam intensity (Qb> 4E12p) the electron current to the VIPM plate
increase significantly up to Qe=15 V~ 15 E-6 A as shown in the bottom
oscillogrammes. This current is much greater of electron current produced by simple
residual gas ionization. This observation present an evidence of formation of high
density of secondary particles in high intense proton beam in the booster, as in Los
Alamos PSR and other high intense rings.

Intense formation of secondary particles is important for the beam behavior and
should be taken into account in the computer simulation.



nstability in the Tevatron
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Instability in Tevatron
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Instability in RHIC, from PACO3
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e For gold beam 55-bunch injection with bunch intensity of 0.9¢9 (design 1¢9), the

pressure rise at IR12 reached 1e-5 Torr,

valve closed, and beam dumped.

e Pressure rise is very sensitive to bunch spacing, for 110-bunch fill, bunch spacing
reduced from 216 ns to 108 ns, the pressure rise at single beam straight sections

was much higher than 55-bunch mode.



DEPOSITS

Cold emission of electrons from electrodes with dielectric films

CATHODE DEPOSITS INDUCE DISCHARGES: cold emission
- ]

++++++ +

POSITIVE IONS ACCUMULATION

- CREATES HIGH DIPOLE FIELD, INDUCING
ELECTRON EXTRACTION (MALTER
EFFECT) or sparks



Instrumentation for observation and damping of

e-p instability

1. Observation of plasma (electrons) generation and correlation with an instability
development. Any insulated clearing electrodes could be used for detection of
sufficient increase of the electron density. More sophisticated diagnostics (from ANL)
is used for this application in the LANL PSR. These electrodes in different location
could be used for observation of distribution of the electron generation.

2. For determination an importance compensating particles it is possible to use a
controlled triggering a surface breakdown by high voltage pulse on the beam pipe
wall or initiation unipolar arc. Any high voltage feedthrough could be used for
triggering of controlled discharge. Could this break down initiate an instability?

3. For suppression of plasma production could be used an improving of surface
properties around the proton beam. Cleaning of the surface from a dust and
insulating films for decrease a probability of the arc discharge triggering. Deposition
of the films with a low secondary emission as TiN, NEG. Transparent mesh near the
wall could be used for decrease an efficient secondary electron emission and
suppression of the multipactor discharge. Biased electrodes could be used for
suppressing of the multipactor discharge, as in a high voltage RF cavity.

4. Diagnostics of the circulating beam oscillation by fast (magnetic) beam position
monitors (BPM).

5. Local beam loss monitor with fast time resolution. Fast scentillator, pin diodes.

6. Transverse beam instability is sensitive to the RF voltage. Increase of the RF
voltage is increase a delay time for instability development and smaller part of the
beam is involved in the unstable oscillation development.

7. Instability sensitive to sextuple and octupole component of magnetic field,
chromaticity (Landau Damping), ...



Electron generation and suppression

Gas ionization by beam and by secondary electrons.
Photoemission excited by SR.
Secondary emission, RF multipactor.

Cold emission; Malter effect; Unipolar arc discharge
(explosion emission). Artificial triggering of arc.

Suppression:

1-clearind electrodes; Ultra high vacuum.
Gaps between bunches.

Low SEY coating: TiN, NEG.

Transverse magnetic field.

Arc resistant material



Conclusion

* Experimental dates from small scale rings
can be used for verification of computer

simulation.

« Stabilization of space charge
compensated proton beam with a high
intensity has been observed.

* |t is useful to use low energy proton ring
for investigation e-p instability.
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